# What Price a Provably Secure Cipher?

#### Ming-Shing Chen

Department of Electrical Engineering National Taiwan University Taipei, Taiwan ccheng@cc.ee.ntu.edu.tw



February 9, 2010

# Acknowledgement

- This is a joint work with
  - Tien-Ren Chen
  - Chen-Mou Cheng
  - Chun-Hung Hsiao
  - Ruben Niederhagen
  - Dr. Bo-Yin Yang, Academia Sinica, Taiwan

# The Provably-secure QUAD(q, n, r) Stream Cipher

- Proposed by Berbain, Gilbert, and Patarin in Eurocrypt 2006
- $\bullet$   $P_i$ 's,  $Q_j$ 's: randomly chosen, public quadratic polynomials

```
State: n-tuple \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{F}_q^n
Output: r-tuple (P_1(\mathbf{x}), P_2(\mathbf{x}), \dots, P_r(\mathbf{x}))
Update: \mathbf{x} \leftarrow (Q_1(\mathbf{x}), Q_2(\mathbf{x}), \dots, Q_n(\mathbf{x}))
```

# A Graphical Depiction

# Security of QUAD

- Main security theorem of QUAD
  - Breaking QUAD implies the capability to solve n + r random quadratic equations in n variables
- Generic  $\mathcal{MQ}$  (Multivariate Quadratics) is NP-hard
  - $\mathcal{MQ}(q, n, n+r) = \text{solve for } n \text{ variables from } n+r \text{ quadratic equations, all coefficients and variables in } \mathbb{F}_q$
  - All known algorithms have average time complexity  $2^{an+o(n)}$  for r/n = constant
    - Most also require exponential space

# Key Observation

- The same reduction carries over to polynomials of arbitrary degrees, e.g., cubics, quartics, . . . , without any modifications
  - So long as linear terms are dense to keep the same distribution under random linear forms
  - But polynomials with higher degrees have way too many coefficients to be practical!
    - Need to use sparse polynomials
    - Need a new security assumption

# $\mathcal{SMP}(q,d,n,m,(\eta_2,\ldots,\eta_d))$

- An instance **S** in  $\mathcal{SMP}(q, d, n, m, (\eta_2, ..., \eta_d))$ , the class of sparse multivariate polynomials, comprises
  - m polynomials  $(P_1(\mathbf{x}), P_2(\mathbf{x}), \dots, P_m(\mathbf{x}))$  in n variables  $\mathbf{x} = (x_1, x_2, \dots, x_n)$
  - Each  $P_i$  is a degree-d polynomial with exactly  $\eta_j = \eta_j(n)$  nonzero degree-j terms for each  $2 \le j \le d$
  - The affine terms are random
- ullet Obviously  $\mathcal{SMP}$  contains  $\mathcal{MQ}$
- Furthermore, solving  $\mathcal{SMP}$  systems with reasonably many terms appears to be hard
  - Ample empirical evidence to support this conjecture

### SPELT, Generalization of QUAD

- **1 P.Q** drawn from  $\mathcal{SMP}$
- 2 Need to select good parameters, say for q = 16, n = r
  - For cubics, need n = 144 at least
  - For quartics, need n = 108 at least
  - Don't need too many terms
    - 10 cubic terms per equation already makes things hard

# Timing on 3 GHz Intel CPU

| Stream cipher                        | Cycles/byte | Throughput | Security         |
|--------------------------------------|-------------|------------|------------------|
| AES (Bernstein and Schwabe)          | 9.2         | 2.61 Gbps  | ≤ 2 <sup>?</sup> |
| SPELT(16, 4, 32, 32, (10, 8, 5))     | 1244        | 19.3 Mbps  | $\leq 2^{152}$   |
| QUAD(2, 160, 160) (BBG SAC 2006)     | 2081        | 11.5 Mbps  | $\leq 2^{140}$   |
| SPELT(16, 4, 108, 108, (20, 15, 10)) | 5541        | 4.3 Mbps   | $\geq 2^{80}$    |
| SPELT(2, 3, 208, 208, (480, 20))     | 11744       | 2.0 Mbps   | $\geq 2^{82}$    |
| QUAD(2, 320, 320) (BBG SAC 2006)     | 13646       | 1.8 Mbps   | $\geq 2^{82}$    |

### Latest Development

- We learned how to launch better brute-force attacks
  - $O(2^n)$  rather than  $O(2^{n+o(n)})$
  - Bad news for QUAD/SPELT because this means more variables and slower speed
- We learned how to program GPU
  - Can we make QUAD/SPELT usable in practice?

# Preliminary Performance Results

| Stream cipher                        | Cycles/byte | Throughput |           |
|--------------------------------------|-------------|------------|-----------|
|                                      |             | CPU        | GPU       |
| AES (BS; OBSC, FSE 2010)             | 9.2         | 2.61 Gbps  | 30.9 Gbps |
| SPELT(64, 4, 32, 32, (10, 8, 5))     | 1244        | 19.3 Mbps  |           |
| QUAD(2, 160, 160) (BBG SAC 2006)     | 2081        | 11.5 Mbps  |           |
| SPELT(16, 4, 108, 108, (20, 15, 10)) | 5541        | 4.3 Mbps   |           |
| SPELT(2, 3, 208, 208, (480, 20))     | 11744       | 2.0 Mbps   |           |
| QUAD(2, 320, 320) (BBG SAC 2006)     | 13646       | 1.8 Mbps   |           |
| SPELT(31, 4, 112, 112, (32, 16, 8))  | 624         | 36.3 Mbps  | 784 Mbps  |
| SPELT(2, 3, 224, 224, (448, 20))     | 3121        | 7.3 Mbps   | 826 Mbps  |
| QUAD(2, 320, 320)                    | 3701        | 6.1 Mbps   | 2.6 Mbps  |

### Concluding Remarks

 In the case of stream cipher, the cheapest price for provable security seems to be one or two orders of magnitude in terms of speed

# Thanks for Listening!

• Questions or comments?